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Abstract

Numerical methods of finding transient solutions to diffusion problems in two distinct phases that are separated by a

moving boundary are reviewed and compared. A new scheme is developed, based on the Landau transformation. Finite

difference equations are derived in such a way as to ensure that solute is conserved. It is applicable to binary alloys in

planar, cylindrical, or spherical geometries.

The efficiency of algorithms which implement the scheme is considered. Computational experiments indicate that the

algorithms presented here are of first order accuracy in both time and space.
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1. Introduction

For physical systems of inhomogeneous composition, diffusion is often observed to cause a change of

phase, even in material held at a constant temperature. Understanding these phase changes is important,

since the microstructure of an alloy can have a profound effect on its properties. They are also central

to many engineering processes, including the homogenisation of layers of foils [1] or powder blends [2]
and the solidification of �transient� liquid phases [3,4]. Phase changes can equally be induced by the diffusion

of solute from some external source. Although the conditions of these processes are rather different, they

are equally industrially important, arising, for example, in problems of gas storage [5], and in the surface
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Nomenclature

c = c(r,t) concentration
cA = c(s(t)�,t) equilibrium concentration of phase A in contact with B

cB = c(s(t)+,t) equilibrium concentration of phase B in contact with A

c1 = c(1,0) far field concentration

DA = DA(c(r,t)) diffusion coefficient in phase A

DB = DB(c(r,t)) diffusion coefficient in phase B

k geometrical constant

M,N number of discretisation points

p = p(u,t) concentration (in phase A)
q = q(v,t) concentration (in phase B)

r position

R position of far boundary

s = s(t) interface position
_s ¼ _sðtÞ ¼ dsðtÞ

dt interface velocity

t time

u proportional position (in phase A)

v proportional position (in phase B)
dv spacestep (in phase B)

k constant related to geometry of system (1, 2 or 3 for planar, cylindrical or spherical, respec-

tively)

r constant between 0 and 1

j growth rate constant

Subscripts are used to denote discretisations of space

Superscripts are used to denote discretisations of time
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modification of particular components (either deliberately, through processes such as aluminisation [6], or

unintentionally, as during the decarburisation of steels [7]).

Diffusion-controlled phase changes can be described with reference to the situation drawn schematically

in Fig. 1, where the concentration of solute (c) varies with position (r). Differences in chemical potential
Fig. 1. Schematic illustration of the concentration profile in the vicinity of a transient liquid phase. Although the diagram represents a

planar geometry, the techniques developed in this work can also be applied to cylindrically and spherically symmetric geometries.
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energy are likely to be associated with such inhomogeneities, providing a driving force for the diffusion of

matter. Composition profiles in each phase therefore also depend on time (t).

It is routine to use differential equations, commonly called �Fick�s laws�, to model the way in which com-

position profiles evolve under the influence of diffusion [8]. Formulae of this type have been the subject of

much research and are well understood. However, in the present context, the analysis is complicated by the
fact that diffusive processes occur simultaneously in two distinct phases.

The concentration of one phase in contact with the other is generally fixed by a thermodynamic con-

straint. But the rate at which solute diffuses towards the interface through phase A and the rate at which

it is removed into phase B are not necessarily equal. In order to conserve solute, therefore, the interface

between the two phases must move. Writing the interface position as s = s(t), the following set of differential

equations can be used to model the complete system [9]:
rk�1 ocðr; tÞ
ot

¼ o

or
rk�1DAðcðr; tÞÞ

ocðr; tÞ
or

� �
; 0 6 r 6 sðtÞ; ð1Þ

rk�1 ocðr; tÞ
ot

¼ o

or
rk�1DBðcðr; tÞÞ

ocðr; tÞ
or

� �
; sðtÞ 6 r 6 R; ð2Þ

DAðcðr; tÞÞ
ocðr; tÞ
or

����
r¼sðtÞ�

� DBðcðr; tÞÞ
ocðr; tÞ
or

����
r¼sðtÞþ

¼ ½cB � cA�
dsðtÞ
dt

; r ¼ sðtÞ. ð3Þ
The first equation describes diffusion to the left of the interface, in phase A; the second equation refers to

diffusion in phase B, to the right of the interface; the third describes the moving boundary condition at the

interface, and is derived by requiring that solute be conserved there (subject to the assumption that it is at

local equilibrium i.e. the concentrations are given by the equilibrium concentrations cA and cB). Together,

they form a coupled system of non-linear differential equations.

Although Fig. 1 illustrates the planar case, these formulae can be applied to any geometry for which a

single parameter is sufficient to describe a location unambiguously. Eqs. (1)–(3) can therefore be used to

describe cylindrically or spherically symmetric systems, where radial distances define positions uniquely.
k = 1, 2 or 3 is a parameter which describes the geometry of the system (planar, cylindrical or spherical,

respectively).

Many of the situations in which diffusion-controlled phase changes are encountered typically involve

isothermal conditions. In order to model these processes, it is therefore reasonable to assume that the

diffusion coefficients in Eqs. (1) and (2) are functions of composition only, and the equilibrium concen-

trations in Eq. (3) are constant. Evidently, it is possible to construct models that can describe the behav-

iour of a system under non-isothermal conditions, or which incorporate the effects of heat flow. However,

the scope of the present work is limited to the isothermal case. In addition, the Gibbs–Thompson effect
will be neglected.

To complete the expression of the diffusion-controlled moving boundary problem, conditions at the fixed

boundaries r = 0 and r = R as well as initial conditions must be stated. For the modelling of processes such

as homogenisation, zero-flux boundary conditions are most appropriate. A consequence of such conditions

is that the solution must conserve solute. This is the case that will be considered in the present work. The

most suitable initial conditions depend on the nature of the phase-change that is to be modelled. For the

kind of homogenisation operations described above, the concentration at every point lies in a one-phase

region of the phase diagram. But many metallurgical applications involve initial compositions that lie in
the unstable two-phase region. In precipitation reactions, for example, a stable phase region grows from

a supersaturated matrix (whose concentration lies somewhere between cA and cB).

Some closed form solutions to Eqs. (1)–(3) are known [10,11]. However, these formulae are only valid if

the diffusion coefficients DA and DB are assumed to be independent of concentration. In addition, they are

restricted to semi-infinite geometries in which one of the phases is of zero initial size (although the exact
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solution can admittedly be extended to cover the case where neither of the phases is of zero initial size in

planar geometries).

Such highly restrictive conditions mean that it is not possible to construct an analytical model of many

situations that are of practical or industrial importance. In particular, the finite boundary conditions which

are experienced by most real-life applications preclude any such attempt. Recourse must be made to numer-
ical methods of approximating the exact solution to Eqs. (1)–(3) instead.
2. Numerical solution techniques

Systems of differential equations with moving boundaries (also known as Stefan problems) arise in a

variety of modelling situations across the sciences; many attempts have been made to solve them numeri-

cally, as Crank has reported in great detail [12]. Furzeland, however, has noted that the most effective ap-
proach to solving a Stefan problem depends on the exact nature of the problem itself [13].

Many of the existing models developed specifically to describe diffusion-controlled phase changes have

been limited to the planar geometry. This constitutes the simplest case, yet is sufficient to model certain

interesting applications, including transient liquid phase bonding [3]. The numerical techniques that have

previously been developed can be broadly distinguished by considering the way in which they discretise

space.

The simplest methods [14,15] solve the diffusion equations (1) and (2) by discretising space with a fixed

mesh and imposing the requirement that the modelled position of the interface coincides with one of dis-
cretisation points. This constrains the motion of the interface: it can only move in a step-wise manner, the

nature of which is determined by the discretisation scheme. As well as being physically unrealistic, this

approximation might additionally be expected to give rise to significant errors, since inaccuracies in esti-

mated interface positions will directly affect the predicted behaviour of the system.

By including the interface position as a continuous variable in the model and solving a finite-difference

form of Eq. (3) to predict its motion, it is possible to overcome this problem. Shinmura et al. [16] did this to

investigate possible interlayer materials for bonding nickel. A similar model was developed by Zhou and

North [17], who additionally introduced a quadratic expression for the concentration profile near the inter-
face (in an attempt to better estimate the fluxes there and thus improve the accuracy of their method).

Extensions to include ternary systems have been implemented by Sinclair et al. [18], and the modelling

of moving boundaries in cylindrical and spherical geometries is possible using the commercially available

DICTRA code [19]. However, the precise mathematical details of this last algorithm remain rather unclear.

Difficulties in tracking the motion of the interface arise because of the discontinuity in the concentration

profile there. Since the chemical activity of each species varies continuously across the sample, describing

the way in which diffusion affects activity (rather than concentration) could potentially overcome these

problems. Then, interface positions could be extracted from the predicted activity profiles, negating the
need to describe the interface position explicitly (and therefore simplifying the analysis) [20]. Existing imple-

mentations of schemes based on this concept have been found to agree very well with known analytical

solutions [21,22].

Although there are numerous advantages to this enthalpy-type approach, it also has a serious limitation:

the algorithms cannot be used to model situations where concentrations are allowed to lie within the (ther-

modynamically unstable) 2-phase region. For many problems of practical interest to metallurgists (such as

precipitation), instabilities of this kind are the very reason that there is a driving force for a change of phase

in the first instance. In these cases, the position of the interface must be modelled directly, using Eq. (3).
Another way of dealing with the discontinuity at the interface is to use a discretisation of space which

takes account of the motion of the interface. Pabi, for example, wrote finite difference equations with ref-

erence to a discretisation at equal intervals of concentration [23]. Effectively, this amounts to reformulating
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the governing equations (1)–(3) in terms of r(c,t) instead of c(r,t). Unfortunately, in this new co-ordinate

system, the boundaries at r = 0 and r = R are no longer fixed. This approach does not, therefore, simplify

the problem.

On the other hand, the transformations proposed by Landau [24] do introduce a co-ordinate system in

which all of the spatial boundaries are fixed. Numerical techniques based on this idea were first developed
by Murray and Landis in 1959 [25], although applications to the modelling of diffusion-controlled phase

changes came later, in the pioneering work of Tanzilli and Heckel [9]. Since then, the theory has been ex-

tended to include situations involving more than two species [26], more than one interphase boundary [27]

and concentration-dependent diffusion coefficients [28].

The Landau transformation involves two new positional variables (one for each phase). If phase A ex-

tends from r = 0 to r = s(t) (as shown in Fig. 1), u ¼ r
sðtÞ fixes the extent of phase A to the domain 0 6 u 6 1.

Writing p = p(u,t) to denote the concentration in terms of this new positional variable (which coincides with

c(r,t) in phase A), the diffusion equation (1) can be written as [12]
1 No

no re-m
½us�k�1 op
ot

� _s
u
s
op
ou

� �
¼ o

ou
½us�k�1DA

½s�2
op
ou

 !
; 0 6 u 6 1; ð4Þ
where _s ¼ _sðtÞ ¼ dsðtÞ
dt .

For phase B, the domain r = s(t) to r = R can be described as 0 6 v 6 1 if v ¼ r�sðtÞ
R�sðtÞ. Writing

q = q(v,t) = c(r,t) to denote the concentration in this new co-ordinate system, the diffusion equation (2)

can be written as
½vðR� sÞ þ s�k�1 oq
ot

� _s
1� v
R� s

oq
ov

� �
¼ o

ov
½vðR� sÞ þ s�k�1DB

½R� s�2
oq
ov

 !
; 0 6 v 6 1. ð5Þ
The transformed version of the interface equation (3) is
DA

s
op
ou

����
u¼1

� DB

R� s
oq
ov

����
v¼0

¼ ½cB � cA�
ds
dt

; u ¼ 1; v ¼ 0. ð6Þ
Although the new co-ordinate system has rendered the governing equations (4)–(6) into a form more com-

plex than (1)–(3), it has simplified the problem in that all of the boundaries are now fixed. Consequently,
any of the advanced numerical methods originally developed to solve systems of partial differential equa-

tions with fixed boundaries can be applied to the problem. Since these methods are well understood, it

might be anticipated that accurate solutions will be found more easily using the transformed co-ordinate

system than would otherwise be the case.

A further advantage of using transformed space is that a constant (time-invariant) discretisation of u and

v corresponds to points whose position (in real space i.e. in the r co-ordinate system) actually varies. In

other words, the mesh automatically adjusts itself to accommodate the motion of the interface, as shown

in Fig. 2.1 It is therefore possible to introduce a non-uniform spatial discretisation that has a higher reso-
lution in locations where large concentration gradients are expected (for example, near the interface). This

can lead to improvements in the accuracy of an algorithm without compromising its efficiency.

The majority of the numerical models referred to above solve equations (1)–(3) (or, equivalently, (4)–(6))

with finite difference expressions that are explicit in nature. There are consequently limitations of the size of

timestep which can be used to find a numerically stable solution. Accurate calculations therefore require a

large computational effort.
te that this is not an �adaptive mesh� inasmuch as the location of the discretisation points corresponds to fixed values of u and v;

eshing calculations are required at any time.



Fig. 2. The Landau transformation introduces new positional variables for which the interval [0,1] corresponds to the extent of one of

the phases. A fixed discretisation of these variables therefore corresponds to points whose position in real space can be considered to be

automatically adjusting to accommodate the motion of the interface.
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In order to overcome this limitation, it is possible to construct implicit finite difference schemes that are

stable for any timestep. However, this is not trivial, since the future interface position depends on future

composition profiles (and vice-versa). In other words, Eqs. (1)–(3) form a coupled set of equations. It fol-
lows that any implicit scheme must consider all three equations simultaneously. Since the interface equation

(3) is not linear, the entire problem involves solving a large system of non-linear equations at each timestep.

This is potentially very demanding in terms of computing time. It follows that implicit schemes would not

necessarily model moving boundary problems very much more efficiently than explicit methods.

A more fundamental problem with the existing algorithms is that none of them conserve solute.2 It is

true that the way in which Eqs. (1)–(3) (or, equivalently, (4)–(6)) were derived means that it is possible

to ensure that solute is conserved (by imposing zero-flux conditions at r = 0 and r = R). However, the finite

difference schemes used to approximate the governing equations have, in all cases, resulted in numerical
solutions which do not conserve solute. This problem has previously been identified by Crusius et al.

[29] and further investigated by Lee and Oh [30].
2 This is not true of the enthalpy methods based on a description of the chemical activity gradients (rather than concentration); but

other drawbacks of this method were pointed out earlier, so algorithms of this nature will not be considered any further.
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As an example of this effect, consider the predictions of Zhou and North [17], which are reproduced

in Fig. 3. In order to model the bonding of nickel using Ni–P interlayers, they calculated how the half-

thickness of a liquid layer varies when cA = 10.223 at.% and cB = 0.166 at.%. If the initial thickness and

concentration of phase A is 12.5 lm and 19 at.%, respectively, and if phase B initially contains no solute,

it is possible to calculate a �theoretical� maximum thickness for the liquid layer: approximately 23.2 lm.
This �maximum� is exceeded by the numerical calculations, as can be ascertained from Fig. 3. The same

is true of results generated from a model based on the Landau transformation and a standard discretisation

of Eq. (6) [12], which was run using the same input parameters (DA = 500 lm2 s�1, DB = 18 lm2 s�1 and

R = 3012.5 lm) and a similar initial step size (1 lm) and time step (0.01 s).

It is emphasised that non-conservation of solute is an inherent problem with existing numerical schemes,

and is not simply a consequence of computational inaccuracies such as rounding errors. It arises because

the numerical approximations used to calculate the fluxes near the interface when solving the interface

equation (3) are different to those used when approximating the diffusion equations (1) and (2). The extent
to which a numerical solution gains or loses solute depends on the precise nature of the finite difference

forms used. In generally, it is non-negligible and is particularly large when large concentration gradients

are present in the system [29,30]. Some authors have even used this value to estimate the accuracy of their

calculations [28].

Non-conservation of solute is clearly a source of inaccuracy in any numerical model, since the exact

solutions to Eqs. (1)–(3) satisfy the physical requirement that matter must be conserved. Yet the accu-

racy of existing schemes is a question that has not been addressed in any great detail. Certainly, the
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thickness of the liquid layer (see text) is also indicated.
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amount of solute lost or gained is related to the type of mesh that is used (as well as the details of the

numerical scheme). If errors associated with non-conservation are to be limited, it is necessary to fix a

maximum allowable timestep. Instead of identifying this maximum, previous workers have generally

simply conducted calculations using rather fine discretisations of time. Restrictions of this type are re-

quired both for implicit and explicit schemes, and will obviously affect the efficiency of any non-con-
servative algorithm.

By using alternative finite difference approximations for Eqs. (1)–(3), it is possible to reduce the errors

associated with non-conservation for both fixed mesh [29] and moving mesh [30] methods. However, none

of the proposed improvements actually render the algorithms conservative of solute. The authors of the

present work have previously shown that conservative schemes can be derived by adopting a different ap-

proach to modelling the interfacial fluxes [31].

These improvements are limited to the planar geometry. Here, a conservative scheme which describes the

behaviour of the diffusion-controlled moving boundary problem in cylindrical and spherical geometries is
developed. The resulting fully implicit algorithm can calculate solutions to a known accuracy for any space-

step or timestep.
3. A conservative scheme

3.1. Derivation

Existing methods of solving the two-phase diffusion problem use finite difference forms based on the

differential equations (3) or (6) to model the motion of the interface. But all such numerical schemes fail

to conserve solute. In order to derive conservative forms, instead of solving for the motion of the inter-

face directly, consider the total amount of solute present in the system. At any time t, this quantity is

given by
Z sðtÞ

0

cðr; tÞkrk�1dr þ
Z R

sðtÞ
cðr; tÞkrk�1dr ¼ ksðtÞ

Z 1

0

pðu; tÞ½usðtÞ�k�1
duþ kðR� sðtÞÞ

�
Z 1

0

qðv; tÞ½ðR� sðtÞÞvþ sðtÞ�k�1
dv;
where k is a geometrical constant (k = 1 for the planar case, 2p for the cylindrical and 4p for the spherical).

For the total amount of solute in the system to remain constant, this value must be time-invariant:
o

ot
sðtÞ

Z 1

0

pðu; tÞ½usðtÞ�k�1
duþ ðR� sðtÞÞ

Z 1

0

qðv; tÞ½ðR� sðtÞÞvþ sðtÞ�k�1
dv

� �
¼ 0. ð7Þ
In order to calculate a solution based on this expression, it is necessary to modify the diffusion equations
too. To do so, note that the identities
oðps½us�k�1Þ
ot

�s½us�k�1 op
ot

þ p½us�k�1 _sþ psðk� 1Þ½us�k�2u_s and

oðpu½us�k�1Þ
ou

�u½us�k�1 op
ou

þ p½us�k�1 þ puðk� 1Þ½us�k�2s
can be used to express Eq. (4) as
o

ot
ðps½us�k�1Þ ¼ o

ou
½us�k�1 _spuþ DA

s
op
ou

� �� �
; 0 6 u 6 1. ð8Þ
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Similar identities can be used to cast Eq. (5) into �divergent� form:
oðqðR� sÞ½vðR� sÞ þ s�k�1Þ
ot

¼ o

ov
½vðR� sÞ þ s�k�1 _sqð1� vÞ þ DB

R� s
oq
ov

� �� �
; 0 6 v 6 1. ð9Þ
In the same way that Eqs. (1)–(3) or (4)–(6) provide a complete mathematical description of the two-phase
diffusion-controlled moving boundary problem, the physical requirements of the system are fully expressed

by Eqs. (7)–(9), though the interface equation is now expressed in an integral form (as opposed to a differ-

ential form). The new formulation is more complicated than both those presented in the previous section,

but it will be shown presently that they can be used to derive a finite difference scheme which conserves

solute (and which might therefore be expected to be more accurate).

In order to derive a finite difference scheme, space is discretised at M + 1 points. The first N + 1 points

are given by a fixed discretisation of u, which corresponds to the extent of phase A. Using a subscript nota-

tion to denote discretisations of space, the points in phase A are written as u0 = 0,u1, . . .,uN = 1, as indicated
in Fig. 2. The last M � N + 1 points are in phase B and are given by a fixed discretisation of v (at

vN = 0,vN+1, . . ., vM = 1). Discretisations of time will be indicated using superscripts (e.g. tj).

Now integrate the divergent form of the diffusion equations (8) and (9) around each node over one time-

step. In phase A,
Z uiþ1=2

ui�1=2

Z tjþ1

tj

o

ot
ðpsðsuÞk�1Þdt du ¼

Z tjþ1

tj

Z uiþ1=2

ui�1=2

o

ou
ðsuÞk�1 _spuþ DA

s
op
ou

� �� �
du dt
can be re-written as
Z uiþ1=2

ui�1=2

fpjþ1sjþ1ðsjþ1uÞk�1 � pjsjðsjuÞk�1gdu ¼
Z tjþ1

tj
ðsuiþ1=2Þk�1 _spiþ1=2uiþ1=2 þ

ðDAÞiþ1=2

s
op
ou

����
iþ1=2

 !(

�ðsui�1=2Þk�1 _spi�1=2ui�1=2 þ
ðDAÞi�1=2

s
op
ou

����
i�1=2

 !)
dt.
Taking a constant, pji , to approximate the variable pj = p(r,tj) over the interval ui�1þui
2

¼ ui�1=2 6 u 6 uiþ1=2

¼ uiþuiþ1

2
(and similarly for pjþ1

i ), it is possible to simplify the integral on the left hand side of this equation:
Z uiþ1=2

ui�1=2

fpjþ1sjþ1ðsjþ1uÞk�1 � pjsjðsjuÞk�1gdu � pjþ1
i

k
fðrjþ1

iþ1=2Þ
k � ðrjþ1

i�1=2Þ
kg � pji

k
fðrjiþ1=2Þ

k � ðrji�1=2Þ
kg;
where the notation rji�1=2 is used for sjui±1/2.

To discretise the right hand side of the equation, introduce a parameter r, such that 0 6 r 6 1. Then, tak-

ing a constant pjþr
i ¼ rpjþ1

i þ ð1� rÞpji to approximate the concentration around ui over the interval between

tj and tj+1, the integral can be solved to give the following finite difference scheme for diffusion in phase A:
1

tjþ1 � tj
pjþ1
i

k
fðrjþ1

iþ1=2Þ
k � ðrjþ1

i�1=2Þ
kg � pji

k
fðrjiþ1=2Þ

k � ðrji�1=2Þ
kg

" #

¼ ðrjþr
iþ1=2Þ

k�1 _sjþrpjþr
iþ1=2uiþ1=2 þ

ðDAÞjþr
iþ1=2

sjþr

op
ou

����
jþr

iþ1=2

( )

� ðrjþr
i�1=2Þ

k�1 _sjþrpjþr
i�1=2ui�1=2 þ

ðDAÞjþr
i�1=2

sjþr

op
ou

����
jþr

i�1=2

( )
i ¼ 1; 2; . . . ;N � 1. ð10Þ
To find the numerical scheme for phase B, Eq. (9) is integrated over one spacestep and one timestep. The

following expression can then be derived:
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1

tjþ1 � tj
qjþ1
i

k
fðrjþ1

iþ1=2Þ
k � ðrjþ1

i�1=2Þ
kg � qji

k
fðrjiþ1=2Þ

k � ðrji�1=2Þ
kg

" #

¼ ðrjþr
iþ1=2Þ

k�1 _sjþrqjþr
iþ1=2ð1� viþ1=2Þ þ

ðDBÞjþr
iþ1=2

R� sjþr

oq
ov

����
jþr

iþ1=2

( )

� ðrjþr
i�1=2Þ

k�1 _sjþrqjþr
i�1=2ð1� vi�1=2Þ þ

ðDBÞjþr
i�1=2

R� sjþr

oq
ov

����
jþr

i�1=2

( )
i ¼ N þ 1;N þ 2; . . . ;M � 1; ð11Þ
where now rji�1=2 is used for (R � sj)vi±1/2 � sj.

The left hand side of Eqs. (10) and (11) correspond to the change in the amount of solute in element

i over the interval between t = tj and t = tj+1. This must be balanced by the right hand side, which re-

lates to the difference between the amount of solute diffusing into the element and the amount diffusing

out (the terms involving D), corrected for the changing size of the element (the advection-type terms
involving _s).

To generate a finite difference form of the conservation equation (7), it is necessary also to derive finite dif-

ference approximations for the concentrations at the boundaries (i = 0,N andM), where Eqs. (10) and (11) do

not apply. At themoving interface, local equilibrium implies that pjN ¼ pjþ1
N ¼ cA and qjN ¼ qjþ1

N ¼ cB. For the

fixed boundaries, on the other hand, zero flux requirements op
ou

��
u¼0

¼ 0 and oq
ov

��
v¼1

¼ 0
� �

are imposed. Inte-

grating (8) between u0 and u1/2 and (9) between vM� 1/2 and vM, it is possible to derive the relationships
pjþ1
0

k
fðrjþ1

1=2 Þ
kg � pj0

k
fðrj1=2Þ

kg ¼ ðrjþr
1=2 Þ

k�1 _sjþrpjþr
1=2 u1=2 þ

ðDAÞjþr
1=2

sjþr

op
ou

����
jþr

1=2

" #( )
ðtjþ1 � tjÞ and

qjþ1
M

k
fðRÞk � ðrjþ1

M�1=2Þ
kg � qjM

k
fðRÞk � ðrjM�1=2Þ

kg

¼ �ðrjþr
M�1=2Þ

k�1 _sjþrqjþr
M�1=2ð1� vM�1=2Þ þ

ðDBÞjþr
M�1=2

R� sjþr

oq
ov

����
jþr

M�1=2

" #( )
ðtjþ1 � tjÞ.
These equations have been written in such a way as to include the untransformed co-ordinate rji . That
notation, which corresponds to the physical position of each node at each timestep, is used as shorthand for

the following relationships:
rji ¼
uisj if i < N ;

sj if i ¼ N ;

ðR� sjÞvi þ sj if i > N .

8><
>:
To discretise the interface equation (7), the integrals are converted to finite sums. The difference between
the amount of solute in each element at time tj+1 and the amount at time tj is given by terms such as
pjþ1
i fðrjþ1

iþ1=2Þ
k � ðrjþ1

i�1=2Þ
kg � pjifðrjiþ1=2Þ

k � ðrji�1=2Þ
kg and

qjþ1
i fðrjþ1

iþ1=2Þ
k � ðrjþ1

i�1=2Þ
kg � qjifðrjiþ1=2Þ

k � ðrji�1=2Þ
kg;
for which alternative expressions are available (Eqs. (10) and (11)). Substituting into the sum given by the

finite difference form of (7), massive cancellation occurs and only terms near the interface are left. The inter-
face equation can be therefore be expressed as
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kðtjþ1 � tjÞðrjþr
N�1=2Þ

k�1 _sjþrpjþr
N�1=2uN�1=2 þ

ðDAÞjþr
N�1=2

sjþr
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ou

����
jþr

N�1=2

( )
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N�1=2Þ
k þ ðrjN�1=2Þ

kÞ þ cBððrjþ1

Nþ1=2Þ
k � ðrjNþ1=2Þ

k � ðsjþ1Þk þ ðsjÞkÞ

þ kðtjþ1 � tjÞðrjþr
Nþ1=2Þ

k�1 �_sjþrqjþr
Nþ1=2ð1� vNþ1=2Þ �

ðDBÞjþr
Nþ1=2

R� sjþr

oq
ov

����
jþr

Nþ1=2

( )
¼ 0. ð12Þ
Eqs. (10)–(12) form a complete discretisation of the problem described analytically in Eqs. (7)–(9), subject

to zero-flux boundary conditions. The way in which they were derived has ensured that solutions calculated

numerically using these expressions will conserve solute. In view of the paucity of data regarding the way in

which diffusion coefficients depend on concentration for the majority of chemical systems, the remainder of
this work makes the simplifying assumption that they are constant.

3.2. Implementation

In order to calculate a numerical solution using Eqs. (10)–(12), particular approximations for the terms

that fall between discretisation points (i.e. at times j + r and positions i ± 1/2) must be chosen. It is also

necessary to determine a method of solving the resulting set of simultaneous equations. Since these ques-

tions relate directly to the overall accuracy and efficiency of the algorithm, it is worth considering them
carefully.

It is well known that explicit schemes (r = 0) only produce numerically stable solutions to diffusion prob-

lems when the timestep is smaller than some critical value, whereas any value of the timestep can be used

with implicit schemes for which r P 1/2 [32,33]. It is also known that any partially implicit scheme (includ-

ing the Crank–Nicolson scheme (r = 1/2)) can give unphysical oscillations in cases where large concentra-

tion gradients are present [32,34].

Large gradients are typical of diffusion-controlled phase changes. In order to generate realistic solutions,

a maximal timestep must therefore be imposed for a given discretisation of space. When the spacestep is
small, this auxiliary condition can be more restrictive than the stability requirement, rendering the methods

very inefficient. Since fully implicit schemes (r = 1) are not subject to such restrictions, attention in the

remainder of this work is limited to algorithms of this kind, though the velocity term will be taken to be
_sjþr ¼ sjþ1�sj

tjþ1�tj .

Unphysical, oscillating solutions can also be generated if approximations for the terms at intermediate

positions are not chosen carefully. For example, non-monotonic profiles can be predicted if the centred-

difference approximation, pjþ1

i�1=2 ¼
pjþ1

i�1
þpjþ1

i
2

, is used [34,35]. On the other hand, the first order up/down-wind

approximations:

pjþ1

i�1=2 ¼ pjþ1
i ; pjþ1

iþ1=2 ¼ pjþ1
iþ1 if the velocity is positive (sj+1 > sj),

pjþ1

i�1=2 ¼ pjþ1
i�1 ; p

jþ1

iþ1=2 ¼ pjþ1
i if the velocity is negative (sj+1 < sj),

do not, no matter what kind of discretisation scheme is used [34,35]. It follows that this type of approxi-

mation is preferable to centred-difference formulae, even though it is only of first order accuracy.

When substituted into Eqs. (10)–(12), a set of simultaneous equations is generated. These involve M + 3

unknowns: the future concentrations pjþ1
0 ; pjþ1

1 ; . . . ; pjþ1
N ; qjþ1

N ; qjþ1
Nþ1; . . . ; q

jþ1
M and the future interface position

sj+1. Since all of the equations are coupled, if the implicit scheme is to conserve solute, the entire system

must be solved simultaneously. But the fact that they form a non-linear system means that this is potentially

very demanding in terms of computing time.

It is interesting to note, however, that Eqs. (10)–(12) are only weakly coupled: if the future interface po-

sition sj+1 were known, the diffusion problems (10) and (11) would become linear. (In fact, they could each
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be written as a tri-diagonal matrix equation, a form for which cheap inversion algorithms are available

[36].) Conversely, if future concentrations were known, the future interface position could be calculated

from Eq. (12) relatively easily.

For the planar case, the authors have already shown that it is possible to implement an efficient algo-

rithm based on de-coupling the problem in this way [31]. The approach amounts to �coefficient freezing�:
firstly, future compositions are calculated using some fixed estimate of sj+1; in turn, the concentration pro-

file is frozen and a corrected estimate for the future interface position is calculated. In order to improve the

accuracy of the estimates, the process is then repeated.

An iterative algorithm that considers Eqs. (10)–(12) sequentially therefore obviates the need to solve a

large system of non-linear equations simultaneously. Nevertheless, the non-linear equation (12) must still

be solved at each iteration. Although it only involves one unknown, finding an exact solution is not trivial.

Furthermore, any estimate is likely to be refined by further iterations. Therefore, rather than finding an ex-

act solution to Eq. (12) for a particular frozen concentration profile, it may be adequate simply to find an
approximate solution. In the planar case, for example, a linearised version of Eq. (12) was found to provide

a sufficiently accurate solution without otherwise affecting the algorithm [31].

A linearisation for the spherical case is constructed using some estimated future interface position, sj+1,

and future concentrations, pjþ1
i and qjþ1

i . An approximate root (which can then be used as an improved

estimate of the interface position) is given by sjþ1
� , where
ðsjþ1
� � sjÞ 3ðrjþ1

N�1=2Þ
2pjþ1

N�1=2uN�1=2 � 3ðrjþ1

Nþ1=2Þ
2qjþ1

Nþ1=2ð1� vNþ1=2Þ þ cAfððsjþ1Þ2 þ sjþ1sj þ ðsjÞ2Þ � ððrjþ1

N�1=2Þ
2

h
þ rjþ1

N�1=2r
j
N�1=2 þ ðrjN�1=2Þ

2ÞuN�1=2g � cBfððsjþ1Þ2 þ sjþ1sj þ ðsjÞ2Þ � ððrjþ1

Nþ1=2Þ
2 þ rjþ1

Nþ1=2r
j
Nþ1=2

þðrjNþ1=2Þ
2Þð1� vNþ1=2Þg

i
¼ 3ðtjþ1 � tjÞ ðrjþ1

Nþ1=2Þ
2 DB

R� sjþ1

qjþ1
Nþ1 � cB
vNþ1 � 0

� ðrjþ1

N�1=2Þ
2 DA

sjþ1

cA � pjþ1
N�1

1� uN�1

" #
.

ð13Þ
The basis of an efficient algorithm for solving Eqs. (10)–(12) is now clear – at each timestep:

(1) Take pji ; q
j
i and sj as initial estimates of pjþ1

i ; qjþ1
i and sj+1.

(2) Calculate sjþ1
� using Eq. (13).

(3) Update sj+1 using this value.
(4) Calculate pjþ1

i and qjþ1
i using the tri-diagonal matrices which result from (10) and (11) (along with the

boundary conditions).

(5) Update pjþ1
i and qjþ1

i using these values.

Steps 2–5 are then repeated until successive estimates of the interface position sj+1 differ by less than

some fixed tolerance. If the series of estimates does converge to some fixed value, it will correspond to a

solution of the implicit set of discretised equations (10)–(12).

Computer code implementing this fully implicit and conservative algorithm has been prepared for the
planar and spherical geometries (k = 1 and 3). In the planar case, de-coupling and linearising the problem

as described above produces a convergent series of estimated interface positions in all of the cases investi-

gated so far. In the spherical case, the series sometimes fails to converge. Problems of this nature arise when

one of the phases becomes very small and the interface velocity becomes very high. In such cases, it was

found that a solution could be generated by decreasing the timestep. Under most circumstances, however,

any discretisations of space and time lead to convergent solutions. The non-convergence of solutions is only

likely to be a problem in investigations where the disappearance of one of the phases is of primary interest.

In the next subsection, various results calculated using the code are presented. By comparing numerical
approximations with the available analytical solutions, the accuracy of the algorithm will be ascertained.
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4. Results and validation

Before addressing any other issue regarding output from the algorithm, it is confirmed that the numer-

ical scheme conserves solute (to within rounding accuracy) in every calculation. Consider, for example, Fig.

3, where it is used to predict how the interface position varies as a function of time for one particular planar
system. All of the calculations use the same input parameters and the time- and space-step in both of the

models based on the Landau transformation are the same. The traces are all qualitatively similar, with one

significant difference: the new scheme does not predict that the thickness of the liquid layer will exceed the

theoretical maximum.

The question of whether the solution is accurate remains. For particular initial and boundary conditions,

analytical solutions are available to describe the motion of an interface which is driven by diffusion [10].

These are all based on Zener�s expression for the concentration profile in an infinitely large matrix phase

surrounding a homogenous growing phase region that is infinitely small at time t = 0 [11]. For this case,
the concentration profile is given by
cðr; tÞ ¼ c1 þ ðcB � c1Þ
IkðjÞ

Ik
rffiffiffiffiffiffiffiffiffiffi
4DBt

p
� �

; IkðuÞ ¼
Z 1

u
v1�k e�v2 dv; ð14Þ
where j is a constant that depends on the geometry of the system (i.e. k), as well as cA, cB and c1 (the initial

concentration of the matrix):
2jkIkðjÞej
2 ¼ cB � c1

cB � cA
.

A concentration profile of this nature implies that the position of the interface moves in a parabolic

manner:
sðtÞ ¼ j
ffiffiffiffiffiffiffiffiffiffi
4DBt

p
. ð15Þ
The availability of an exact solution affords an opportunity to asses the accuracy of the numerical

scheme. However, the exact solution describes the situation where one phase (A) is initially infinitely small

and where the other (B) is infinitely large, whereas the numerical solution has been developed to describe a

system in which there are two phases, each of which is of a finite size. Despite this apparent difficulty, it is

still possible to compare the two models.
Firstly, note that the finite extent of phase B does not affect the behaviour of the system so long as there

is no diffusion taking place at the far end (r = R). It is therefore appropriate to compare numerical and ana-

lytical predictions at �short� times (when the effect of the far boundary is not significant). Secondly, the size

of phase A is only zero for t = 0. Therefore, if the numerical calculations are initialised using the exact solu-

tion at some finite time (when phase A is of finite extent and homogenous in composition), the algorithm

can be used to solve the early stages of the problem for which analytical formulae are available. It is then

possible to compare numerical results with the exact solution.

Numerical calculations have therefore been conducted for a system where atomic fractions of 0.4 and 0.2
are taken as values for the interfacial composition in phases A and B, respectively, and where the far-field

value is 0.3. For a geometry where R = 1 and DB = 1, the model was initialised using the exact profiles for a

time of 0.0001 (in the planar case) and 0.025 (in the spherical case) and run with a various meshes. Some of

the associated results are presented in Fig. 4.

According to Eq. (15), the interface position should vary with the square root of time. This behaviour is

reflected in both Figs. 4(a) and (b). However, there are some inaccuracies in the predictions. These arise due

to the finite difference approximations used for (4)–(6); naturally, the magnitudes of the errors depend on

the discretisation, as well as the overall accuracy of the numerical scheme.
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Fig. 4. For particular initial and boundary conditions, an exact solution is available. The interface position is predicted to vary with

the square root of time; numerical results are in reasonable agreement: (a) planar geometry, (b) spherical geometry.
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In order to investigate the way in which particular choices for the timestep affect the accuracy of predic-

tions, a very large number of nodes (10000) was fixed, and calculations repeated for a various different

timesteps. For each set of calculations, the difference between the numerical predictions and the exact solu-

tion was calculated; associated data are presented in Fig. 5. Further increases to the spatial resolution were
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Fig. 5. The accuracy of the model is strongly influenced by the magnitude of the timestep. These results indicate that the algorithm is at

least of first order accuracy: (a) planar geometry, (b) spherical geometry.

T.C. Illingworth, I.O. Golosnoy / Journal of Computational Physics 209 (2005) 207–225 221



0

0.0002

0.0004

0.0006

0.0008

0.001

0 0.002 0.004 0.006 0.008 0.01

Effect of spacestep on accuracy of planar model

400 points
200 points
100 points

)t(s  ,rorr
E

u n
e

m
a ci r
l

)t(s - 
xe
ac

t

 D(a)

(b)

B t

0

0.0005

0.001

0.0015

0.002

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Effect of spacestep on accuracy of spherical model

500 points
250 points
1000 points

)t(s  ,rorr
E

un
m

er
ic

al
)t(s - 

axe
ct

DB t
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geometry, (b) spherical geometry.
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found to have no discernable effect on the accuracy of the algorithm, indicating that the errors shown in

Fig. 5 are dominated by the coarse discretisation of time.

For both geometries, decreasing the timestep improves the accuracy of the model: halving the timestep

decreases the error by a factor of approximately two. This demonstrates that the algorithm is first order

accurate in time. In fact, the planar model performs rather better than that, as halving the timestep reduces
the error by a factor slightly greater than two.

In Fig. 6, the error in the solution calculated by the numerical algorithm is shown for various dif-

ferent spacesteps. Because it uses a transformed co-ordinate system, the spatial variables u and v are

discretised rather than real space. Since the analytical solution with which the numerical model is being

compared is only valid when phase A is uniformly at its equilibrium concentration, cA, the behaviour

of the numerical system is determined purely by the spacing between nodes in phase B, dv. The results

clearly indicate that increasing the number of points in phase B (i.e. decreasing dv) means that more

accurate solutions can be calculated. As might be expected of a model that uses simple up/down-wind
approximations, the algorithms describing both the planar and the spherical geometries are first order

accurate in space.

As previously mentioned, one advantage of discretising the problem in transformed space is that the

meshes automatically adjust themselves to accommodate the moving interface position. It is therefore pos-

sible to impose irregular meshes with fine resolution in regions where large concentration gradients are ex-

pected (near to the interface, for example) and larger spacesteps elsewhere. The results plotted in Fig. 4

correspond to calculations completed using both irregular and regular meshes. It is clear that, for a given

number of discretisation points, it is possible to find significantly more accurate solutions by using irregular
meshes. In this way, errors can be reduced without requiring any extra computational effort.
5. Summary

Certain industrial procedures involve diffusion in two-phase binary systems, a process which can be de-

scribed mathematically by a system of three differential equations. Although the equations themselves are

simple, the analysis of the problem is complicated by the fact that the interface between the two phases can
move. Few analytical solutions to this type of problem are available; methods of finding numerical approx-

imations are therefore of interest.

Two broad approaches to the modelling of diffusion-controlled phase changes have been identified in the

literature. In the first, a fixed discretisation of space is imposed and the motion of the interface is tracked

across this mesh. Models of this type [14–19,30] do not involve complicated mathematics. However, this

method of discretisation means that it is difficult to model the motion of the interface very precisely.

The overall accuracy of these numerical solutions is consequently unclear. To overcome these difficulties,

it is possible to treat the chemical activity instead of concentration [20,21]. But doing so precludes the mod-
elling of important phenomena, where the concentration away from the interface lies in the two-phase

region.

An alternative approach, which is capable of handling this situation, uses a discretisation of space which

varies according to the motion of the interface. This essentially amounts to re-formulating the problem in

terms of another spatial co-ordinate system in which the positions of all of the boundaries are fixed. Models

of this type [9,26–29] have the advantage that, although the governing equations are rendered more com-

plicated, well known techniques can be used to solve them. It is then possible to calculate accurate solutions

more easily than would otherwise be the case.
Solute fluxes near the interface affect both the motion of the interface and the evolution of the concen-

tration profile. All previous work has developed finite difference equations to describe either problem inde-

pendently. For this reason, none of the existing numerical solutions conserve solute. This is clearly a source
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of inaccuracy, since the conservation of solute is a physical requirement of the exact solution to the moving

boundary problem.

In the present work, a fully implicit, conservative finite difference scheme has been developed to solve the

system of differential equations associated with two-phase diffusion-controlled moving boundary problems.

It can be used to describe the behaviour of binary systems in planar, cylindrical or spherical geometries. The
basis upon which the model could be extended to model two- (or three-) dimensional geometries is well

established [12].

Issues pertaining to the efficient implementation of the algorithm have been addressed. In particular, it

has been possible to solve most problems of interest by de-coupling the three problems (interface motion,

diffusion in phase A and diffusion in phase B). This means that the problems are treated sequentially, rather

than simultaneously, in which case efficiency can be further improved by linearising the equation that de-

scribes the way in which the interface moves.

Numerical results indicate that the algorithm does indeed conserve solute and is of first order accuracy in
both space and time. Predictions are in close agreement with the available analytical solutions. The com-

puter source code that was used to produce the results presented here is freely available for download from

the Materials Algorithm Project website: (http://www.msm.cam.ac.uk/MAP).
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